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Abstract
To enable the determination of detailed structures of nanomaterials, we have previously made
the theory of low-energy electron diffraction (LEED) much more efficient for complex and
disordered systems, calling it NanoLEED: our cluster approach speeds up the computation to
scale as n log n, rather than the standard n3 or n2, with n the number of atoms, for example.
Strong multiple scattering may occasionally cause poor convergence: this is solved here by
treating all scattering within subclusters of a few atoms (e.g. a SiH3 group) with accurate matrix
inversion. For the structure determination of complex nanostructures, an efficient search method
is also essential: for that purpose a modified version of tensor LEED is here adapted to
nanostructures, and called NanoTensorLEED.

1. Introduction

In recent publications [1–3], we have introduced efficient new
approaches for calculating intensities of low-energy electron
diffraction (LEED) for complex nanostructures, which we
collectively call NanoLEED, after the name of our computer
code. The accuracy, structural sensitivity and performance
of the approximations used were demonstrated for ordered
structures—pure C60, endohedral C60, exohedral C60 and
pure carbon nanotubes adsorbed on Cu(111)—and also for
disordered finite-sized structures—silicon nanowires—with
various shapes and distortions. The performance gain leads
to n log n scaling of the computational time, instead of
the standard n3 or n2 scaling, where n is the number of
inequivalent atoms, for example. This allows much more
complex structures to be analyzed than with conventional
LEED methods.

In this paper we report two further developments of this
new method. The first deals with a shortcoming of our
approximations, not unfamiliar in other LEED approximations:
they occasionally converge poorly for some atomic geometries,
presumably also due to very strong multiple scattering.

3 Present address: Institute of High Performance Computing, 1 Science Park
Road, #01-01 The Capricorn, Singapore Science Park II, 117528, Singapore.
4 Author to whom any correspondence should be addressed.

To overcome this limitation, we treat problematic small
subclusters of atoms with matrix inversion to guarantee full
and accurate inclusion of multiple scattering within them: the
result is a (non-diagonal) scattering matrix describing the exact
and complete scattering by that subcluster, which can then be
included as a non-spherical ‘pseudo-atom’ in the NanoLEED
code. This approach uses the idea of one-center expansion
applied earlier by Pendry to LEED [4] and follows the cluster
approach to LEED developed in the 1980s [5].

The second development addresses the need to automate
the structural search for complex nanostructures. With such
structures, we may expect to need relatively large atomic
displacement steps during a search, compared to the ∼0.01 nm
steps common in past LEED searches [6]. Therefore, the
second-order tensor LEED method [7] commonly used in
current LEED codes5 is likely to not be the most appropriate
for nanostructures. Furthermore, the conventional tensor
LEED approach would be computationally much less efficient
for nanostructures, because it requires one ‘time-reversed’
LEED calculation for each exit direction: that can be done
efficiently in layered structures like surfaces, but not in non-
periodic structures like nanoparticles. Our approach here is
therefore a new, simplified version of tensor LEED [8] that

5 E.g. Tensor LEED codes of A Barbieri and M A Van Hove, available from
M A Van Hove.

0953-8984/08/304202+06$30.00 © 2008 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/20/30/304202
mailto:vanhove@cityu.edu.hk
http://stacks.iop.org/JPhysCM/20/304202


J. Phys.: Condens. Matter 20 (2008) 304202 G M Gavaza et al

omits the ‘time-reversed’ LEED calculations. This allows a
more approximate but still fast estimation of the appropriate
directions of displacement of the atoms; we then repeat the full
NanoLEED multiple-scattering calculation after that collective
displacement, iterating until a minimum is found, for example
with steepest descent or conjugate gradient methods. Such an
approach is analogous to the familiar use of the Hellmann–
Feynman theorem in total-energy optimization [9, 10].

Our NanoTensorLEED method contrasts with the more
common use of the second-order tensor LEED method: in
that case most of the search takes place within the range of
validity of second-order tensor LEED (∼0.04 nm), starting
from a single reference structure at which a full multiple-
scattering calculation is made; the reference structure itself
is rarely updated, and in many analyses it is even never
updated [6], because of the small resulting displacements in
the more predictable surface structures to which tensor LEED
is normally applied.

In the following, we first summarize the theoretical basis
of our NanoLEED method, and then introduce the two new
developments that deal with occasional poor convergence and
with automated searches.

2. Review of the NanoLEED method

We briefly describe two computationally efficient methods to
solve the multiple scattering problem in LEED [1–3]: an
approximate grid-based method called sparse-matrix canonical
grid or SMCG method; and the approximate ‘UV’ method.
Both approaches are iterative and rely in LEED on sufficient
inelastic damping of electron wave amplitudes to compensate
for the strong elastic scattering.

First, let us recall that solving the multiple scattering in
LEED can be formulated as the inversion of a matrix A, which
involves computing times that typically scale as N3 and N2,
depending on the method, if A has dimension N .

In the sparse-matrix canonical grid (SMCG) method [11],
the scaling is improved by fast Fourier transform (FFT).
This is made possible by changing matrix A to be strictly
periodic (as for a periodic structure), i.e. An,m = An−m ,
even though the structure may not be periodic at all. For
LEED, this requires solving the scattering as if the atoms
occupied a periodic, rectangular spatial grid. With an arbitrary
non-periodic structure, including any nanostructure, we can
construct such a regular grid and refer each atom to its nearest
grid point: then the propagation of an electron from an atom i
to an atom j proceeds via the grid points P and Q nearest to
atoms i and j , respectively, i.e. along the path i → P → Q →
j . This method is exact if a sufficient number of partial waves
are used, so as to enable the accurate propagation of electrons
between each atom and its nearest grid point. The major part
of the computation turns out to be the scattering between the
regular grid points, which FFT solves in times proportional to
Ng log Ng, where Ng is the number of grid points used (in each
dimension, FFT requires a number of grid points that is a power
of 2): the number Ng is approximately related to the number of
atoms.

An alternative method to SMCG uses singular value
decomposition (SVD). If the rank of matrix A (i.e. the number
of its non-zero eigenvalues) is r < N , A can be factored
into a product of three matrices, AN×N = UN×r Dr×r Vr×N ,
where the smaller diagonal matrix D contains the r non-zero
eigenvalues of A, while U and V are rectangular. LEED does
not produce vanishing eigenvalues, but this approach can still
be used approximately by equating small eigenvalues to zero:
we can then replace A by U DV . Thereby, the smaller is the
rank r , the faster is the computation. To efficiently find the rank
and the singular values of a matrix, the so-called ‘U V ’ method
can be used for the SVD decomposition [12]. This approach
leads to computation times proportional to N log N , with N
the dimension of A.

We found that the SCMG and UV methods are most
efficient in different circumstances. SMCG outperforms UV
for large numbers of atoms and large interatomic distances. But
we also found that a more conventional approach, the conjugate
gradient (CG) method [13], is more efficient than either SMCG
or UV for small numbers of atoms and small interatomic
distances [1–3]. Our NanoLEED code therefore combines
these three methods and selects the most efficient one at each
stage: a single structure often includes near, intermediate and
distant neighbors, so different methods are applied to different
pairs of atoms in the same structure.

Our implementation in the code named NanoLEED allows
both periodic and non-periodic structures, including isolated
nanoclusters.

3. Exact multiple scattering in atomic subclusters

In our applications of NanoLEED, we have found that
occasionally the iterations involved in SMCG and UV do
not converge well. For example, this happened with SiH3

clusters which were used to terminate the surface of a
silicon nanowire [3]. Removing the hydrogen solved the
non-convergence: it may come as a surprise that hydrogen,
usually viewed as a weak scatterer, causes poor convergence
in multiple scattering, with only a weak dependence on which
phase shifts we used for H! This behavior also occurred at
isolated energies in C60 buckyballs [1, 2] (in that case we could
fortunately skip such energies and interpolate between well-
converged intensities at nearby energies). We believe that this
is due to unusually strong multiple scattering between near
neighbors, in circumstances that are not easy to predict. As
already pointed out by Pendry [14], multiple scattering can be
very strong at energies where waves reaching an atom have the
same phase, giving strong constructive interference.

A solution to such poor convergence is to treat the multiple
scattering by exact matrix inversion in a small subcluster of
atoms between which the poor convergence arises. A single-
center expansion is then used. The subcluster should remain
small to keep the maximum required angular momentum lmax

low (it is roughly proportional to the radius of the subcluster).
To connect the previous summary with the scattering from
small clusters of atoms, we thus next briefly recall a common
formulation of electron scattering in LEED.
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The standard LEED method [15, 16] calculates matrices
Ti , representing the amplitudes due to scattering paths ending
at all relevant atoms i (i = 1, ..., n), including all partial
waves and all multiple scattering paths within a suitably chosen
cluster (or layer) of atoms. The matrices Ti are the solution of

the equation AT
� = t , where T

� = (T1 T2 · · · Tn)
T, while

t = (t1 t2 · · · tn) T contains the known atomic scattering
properties ti of each individual atom i , and A = I − tG
contains, besides t , the unit matrix as well as Green’s functions
G for propagation between the various atoms. The dimension
N of matrix A is proportional to the number n of inequivalent
atoms in the cluster or layer and to the number of partial waves
needed, L = (lmax + 1)2, typically 25–100.

We now decouple the electron multiple scattering inside
each small subcluster from the multiple scattering occurring
outside and solve the multiple scattering problem in two stages:
first within each isolated subcluster; then for the whole system
where each subcluster has been replaced by a single object with
the same scattering properties as the corresponding subcluster.

Earlier, the theoretical approach described above has been
developed [17] for an arbitrary cluster of atoms and for
arbitrary chemical identities of the cluster’s constituents. The
main idea is to group atoms together in small clusters that can
be replaced by entities with scattering properties equivalent
to the original small cluster. Having the atoms grouped as
described, a series of efficient embedding algorithms [17, 18]
can be used to solve the problem of electron multiple scattering
in the whole cluster. We only present here how the multiple
scattering can be decoupled, the rest of the topic being
available in [17].

In a cluster of scatterers, the individual scattering-related
operators (and consequently the corresponding scattering
matrices) are expressed with respect to each scatterer, i.e. the
origins to which the individual operators relate are the
geometrical centers of the corresponding atoms. To build a
cluster operator one must choose a common origin and relate
all the individual operators to it. For example, if the cluster
operator A is a sum of individual operators Ai , then

A =
∑

i

Āi =
∑

i

Tr( �Ri )Ai Tr(− �Ri ) (1)

where Tr( �Ri ) is a translation operator needed to ‘shift’ atom i
(more precisely, an electronic scattering state related to i ) onto
the common origin, and Āi is the resulting shifted operator. In
the following, we will use a bar to denote the shifted atomic
operators related to the common origin of the cluster.

With this notation, the cluster’s scattering matrix becomes

T =
∑

i

T̄i . (2)

Here T̄i includes all the multiple scattering paths ending at
atom i , referred to the common origin. These operators obey
the familiar self-consistent equation [14, 19]

T̄i = t̄i +
∑

j �=i

t̄i G
i j
o T̄ j (3)

where t̄i are the atomic scattering matrices (t̄i is diagonal when
atom i is not shifted) and Gi j

o is the free-space propagator

Green function from atom j to atom i (we will generally omit
the atom indices i and j for readability). This is the equation
we usually solve by UV-SMCG.

Now, let us group the atoms in subclusters which will be
labeled by Greek letters α, β, . . .. Each one of these small
clusters is characterized by its own scattering matrix

τα =
∑

i∈α

T̄i (α) =
∑

i∈α

Tr( �Ri − �Rα)Ti (α) Tr(− �Ri + �Rα).

(4)
Here Ti(α) describes all those multiple scattering paths ending
at atom i which never scatter outside the subcluster α. These
operators obey the self-consistent equation

T̄i(α) = t̄i +
∑

j∈α
j �=i

t̄i GoT̄ j(α) (5)

or explicitly

Tr( �Ri − �Rα)T (α)i Tr(− �Ri + �Rα)

= Tr( �Ri − �Rα)ti Tr(− �Ri + �Rα) +
∑

j∈α
j �=i

Tr( �Ri − �Rα)ti

× Tr(− �Ri + �Rα)Go Tr( �R j − �Rα)Tj(α) Tr(− �R j + �Rα).

(6)

Now equation (5) can be written using the multiple
scattering series expansion:

T̄i(α) = t̄i +
∑

j∈α
j �=i

t̄i Got̄ j +
∑

j∈α
j �=i

∑

k∈α
k �= j

t̄i Got̄ j Got̄k + · · · . (7)

If one sums T̄i over all the atoms belonging to a certain
subcluster α, the result is an operator describing all the multiple
scattering paths ending in the subcluster α, which we can call
T̄α. To find the equation it obeys, we sum equation (3) over all
the atoms i belonging to α.

∑

i∈α

T̄i =
∑

i∈α

t̄i +
∑

i∈α

∑

j �=i

t̄i GoT̄ j . (8)

The sum over j can be split into a sum over atoms that
belong to α and a sum over atoms that do not belong to α:

∑

i∈α

T̄i =
∑

i∈α

t̄i +
∑

i∈α

( ∑

j∈α
j �=i

t̄i GoT̄ j +
∑

j /∈α
j �=i

t̄i GoT̄ j

)
. (9)

The terms that refer to atoms that do not belong to α can
further be grouped by the subclusters to which they do belong:

∑

i∈α

T̄i =
∑

i∈α

t̄i +
∑

i∈α

( ∑

j∈α
j �=i

t̄i GoT̄ j +
∑

β �=α

t̄i Go

∑

j∈β

T̄ j

)

=
∑

i∈α

t̄i +
∑

i∈α

( ∑

j∈α
j �=i

t̄i GoT̄ j +
∑

β �=α

t̄i Go

∑

β

T̄β

)
. (10)

3
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If we continue by expanding all T̄ j , j ∈ α, using
equation (3), we are led to

T̄α =
∑

i∈α

T̄i

=
∑

i∈α

(
t̄i +

∑

j∈α
j �=i

t̄i Got̄ j +
∑

j∈α
j �=i

∑

k∈α
k �= j

t̄i Got̄ j Got̄k + · · ·
)

+
∑

β �=α

∑

i∈α

(
t̄i +

∑

j∈α
j �=i

t̄i Got̄ j +
∑

j∈α
j �=i

∑

k∈α
k �= j

t̄i Got̄ j Got̄k +· · ·
)

× Go

∑

β

T̄β. (11)

By looking at equation (7), one can easily identify the
quantities inside the brackets as T̄i (α) and, taking equation (4)
into account, one finally finds the expression

T̄α = τ̄α +
∑

β �=α

τ̄αGoT̄β (12)

which is equivalent to equation (3) but written for subclusters
seen as entities rather than for individual atoms.

Equations (3), (5) and (12) form the theoretical backbone
of our subcluster method. First, equation (3) is solved
by matrix inversion for each of the small subclusters, and
using equation (5) we get the equivalent scattering matrices
corresponding to each subcluster. Finally, equation (12) is
solved for the complete system, by the efficient UV-SMCG
method.

4. NanoTensorLEED

In applying LEED to nanostructures, whether ordered or not,
one faces a relatively large number of structural parameters
that must be fit to experiment. The search for the correct
structure is thus more difficult than in most structure analyses
performed to date for ordered surfaces. For this purpose
we apply a minimum-seeking method modeled after that
common in total-energy minimizations based on Hellmann–
Feynman forces [9, 10], where a completely new calculation
of total energy and forces is performed after all the atomic
positions have been changed in directions suggested by the
forces. In tensor LEED terminology (and this is the way we
implement NanoTensorLEED), this is equivalent to recalculate
LEED intensities for a completely new reference structure after
all atoms have been moved in directions suggested by the
steepest descent of the R-factor for the reference structure,
which is calculated using tensor LEED: thus a new reference
structure calculation is performed after a single tensor LEED
calculation.

Tensor LEED in the past has been used to obtain a
relatively accurate approximation of the R-factor hypersurface
close to a fixed ‘reference structure’: using that approximation
a nearby R-factor minimum is found by multiple tensor
LEED calculations (usually within ∼0.05 nm of the reference
structure, and usually without iterating the reference structure
itself); one way to describe this is that tensor LEED gives
a relatively accurate direction of steepest descent of the R-
factor for the reference structure, leading sufficiently close

to the desired minimum, in addition to providing relatively
accurate intensities and R-factor values. Instead of this very
local approach, we now expect to make larger steps beyond
the range of accuracy of tensor LEED, where the direction
of steepest descent can have changed substantially from that
for the reference structure, and the intensities may be poorly
represented by tensor LEED. We will not even attempt to
calculate LEED intensities this way, but only the approximate
steepest direction. And, since this steepest direction is not
accurate far from a reference structure, there is a forteriori
no point in calculating it with the usual accuracy. We may
therefore use a simplified version of tensor LEED to obtain
a rougher and faster estimate for that steepest direction: this
is then adequate to move each atom in the proper general
direction, after which a new reference structure is calculated,
repeating the whole process iteratively. It is important to
stress that this simplified version of tensor LEED is only
used to obtain a direction of atomic movement, while the
LEED intensities in the new reference structure are calculated
without tensor LEED and thus without any tensor LEED
related approximations. Thus, our simplified tensor LEED
method only affects the effectiveness of the search rather than
the accuracy of the resulting optimum structure.

To apply this approach to our NanoLEED formalism, we
start with the standard second-order tensor LEED method and
assume that an incident electron beam is aimed at the analyzed
sample. The incident electron wavefunction is a plane wave
and can be written as

φin(�r) = 〈�r |φin〉 = 〈�r |�kin〉 = 1

(2π)3/2
ei�kin�r . (13)

At the analyzer, the recorded electron’s wavefunction is

φsc( �Rsc) = 〈 �Rsc|φsc〉. (14)

The scattered electron state can be written as a function of
the incident state and of the transition operator of the cluster:

|φsc〉 = (1 + GoT )|φin〉. (15)

However, as in LEED the electrons reaching the analyzer
have all been scattered, the last equation becomes

|φsc〉 = GoT |φin〉. (16)

So the scattered wavefunction of an electron reaching the
analyzer can be written as

φsc( �Rsc) = 〈 �Rsc|GoT |φin〉. (17)

At large Rsc, the asymptotic limit is valid:

〈 �Rsc|Go = eik0 Rsc

k0 Rsc
〈�ksc|, (18)

where k0 = |�ksc| = |�kin| and �ksc = k0 R̂sc.
The scattered wavefunction is then

φsc( �Rsc) = eik0 Rsc

k0 Rsc
〈�ksc|T

∣∣�kin〉 ≡ eik0 Rsc

k0 Rsc
f (�sc). (19)

4
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where f (�sc) = 1
k0

〈�ksc|T |�kin〉 is the angular scattering
distribution [19].

As stated in the previous section, the cluster’s scattering
matrix in the reference configuration (i.e., before atoms are
displaced) is

T =
∑

i

T̄i =
∑

i

Tr( �Ri)Ti Tr(− �Ri), (20)

while in the modified configuration (i.e., after atoms are
displaced) it will be

T ′ =
∑

i

T̄ ′
i =

∑

i

Tr( �Ri + δ �Ri )T ′
i Tr(− �Ri − δ �Ri ). (21)

The multiple scattering self-consistent equations are, for
the reference and the modified configurations, respectively:

T̄i = t̄i +
∑

j �=i

t̄i GoT̄ j , with

T̄i = Tr( �Ri)Ti Tr(− �Ri) (22)

and

T̄ ′
i = t̄ ′

i +
∑

j �=i

t̄ ′
i GoT̄ ′

j , with

T̄ ′
i = Tr( �Ri + δ �Ri )T ′

i Tr(− �Ri − δ �Ri), (23)

The corresponding expansions in multiple scattering series
are

T̄i = t̄i +
∑

j �=i

t̄i Got̄ j +
∑

j �=i

∑

k �= j

t̄i Got̄ j Got̄k + · · · (24)

and

T̄ ′
i = t̄ ′

i +
∑

j �=i

t̄ ′
i Got̄ ′

j +
∑

j �=i

∑

k �= j

t̄ ′
i Got̄ ′

j Got̄ ′
k + · · · . (25)

If we adopt the same approximation level as in second-
order tensor LEED [8], the multiple scattering in the reference
and in the modified configurations are the same, except for one
displaced atom, which we here take to be the last scattering
atom. Thus:

t̄ ′
i +

∑

j �=i

t̄ ′
i Got̄ ′

j +
∑

j �=i

∑

k �= j

t̄ ′
i Got̄ ′

j Got̄ ′
k + · · ·

∼= t̄ ′
i +

∑

j �=i

t̄ ′
i Got̄ j +

∑

j �=i

∑

k �= j

t̄ ′
i Got̄ j Got̄k + · · · . (26)

Since we here only allow the last scattering atom, i , to be
displaced, this approximation includes only those paths that
end at a displaced atom. The missing paths are those that
start at a displaced atom, such as i , scatter through the cluster
and end at the detector; for reasons of computational cost, to
be further explained later, we will neglect these other paths
starting at atom i . Note that in equation (26), if a path scatters
from any displaced atoms before reaching atom i , we assume
that these atoms still have their undisplaced location during
such earlier scattering.

This means that for the reference and modified structures
one has

T̄i = t̄i +
∑

j �=i

t̄i GoT̄ j

T̄ ′
i

∼= t̄ ′
i +

∑

j �=i

t̄ ′
i GoT̄ j .

(27)

In this approximation, the change in angular scattering
distribution only depends on δti and has an expression similar
to equation (2) of (see footnote 5):

δ f (�) =
〈
�ksc

∣∣∣∣
∑

i

{
(t̄ ′

i − t̄i )

[
1 +

∑

j �=i

Gi j
o T̄ j

]}∣∣�kin

〉
, (28)

where |�kin〉 and |�ksc〉 represent plane waves in our case. Taking
into account that

Tr( �Ri + δ �Ri ) = Tr( �Ri ) Tr(δ �Ri ) = Tr(δ �Ri ) Tr( �Ri ) (29)

we obtain

δ f (�) =
∑

i

{∑

L ,L ′
a′

i L〈ko; L|−ti + Tr(δ �Ri )ti Tr(−δ �Ri)|L ′〉

×
[

ai,L ′ +
∑

j �=i

∑

L ′′
Go;L ′,L ′′ i j( �R j − �Ri )Tj;L ′′( �R j )

]}
. (30)

Here Gi j
o;L ′,L ′′( �R j − �Ri ) is a matrix element (in spherical-

wave basis set) of the free-space propagator, Tj;L ′′( �R j ) =
〈ko; L ′′|Tj Tr(− �R j )|�kin〉 is the result vector of the UV-SMCG
algorithm,

〈k0; L|−ti + Tr(δ �Ri )ti Tr(−δ �Ri)k0; L ′〉
= − ti,lδL L ′ +

∑

L ′′
JL ,L ′′(δ �Ri)ti,l′′ JL ′′,L ′(−δ �Ri ) (31)

and

JL ,L ′(δ �Ri ) = 4π
∑

L ′′
il

′′
jl′′(k0|δ �Ri |)YL ′′(δ R̂i)a(L, L ′, L ′′) (32)

where a(L, L ′, L ′′) is a Clebsch–Gordan coefficient.
In equation (30), the first term between square brackets,

ai;L ′(�kin), is the incident unscattered wave on atom i , while
the second term includes all scattering paths leading to
atom i (note that both these terms exclude scattering by
atom i ).

In conventional tensor LEED, a′
i;L(�ksc) represents the fully

scattered ‘time-reversed’ LEED state (as if electrons were
traveling from the detector to atom i , including any number
of scatterings along the way): this must be calculated for
each desired exit direction (each measured beam), which can
be done efficiently since the layer-scattering matrices need
not be recomputed for each such direction if the surface has
two-dimensional periodicity. With NanoLEED, there would
be no analogous saving in recomputing a′

i;L(�ksc), since no
periodic layers are defined, so that each exit direction would
require a complete ‘time-reversed’ NanoLEED calculation, a
prohibitive cost. However, we need less accuracy than with
tensor LEED (because we only need to find the approximate
direction of steepest descent of the R-factor), so we may
approximate a′

i;L(�ksc) to be the unscattered wave traveling
directly between atom i and the detector, as we already did
in deriving equation (28):

a′
i;L(�ksc) ≡ 〈�ksc|Tr( �Ri)|k0; L〉 = 1

k0
e−i�ksc �Ri Y ∗

L (k̂sc). (33)

We have assumed a plane-wave final state in our
derivation, since this choice is convenient for a distant detector.
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But if the detector were a nearby atom (as could happen in
techniques like x-ray absorption fine structure), then a single
plane wave would not suffice to describe the near-field behavior
of the scattered wave: one could then work in the spherical-
wave representation from equation (18) onward.

A similar expression holds for ai;L ′ :

ai;L ′(�kin) ≡ 〈k0; L ′|Tr(− �Ri)|�kin〉 = 1

k0
ei�kin �Ri YL ′(k̂in). (34)

Equation (30) can now be expanded by the same scheme
described in the tensor LEED codes5 and a tensor can be
calculated for NanoTensorLEED. In particular, we can perform
the series expansion over Cartesian coordinates shown in
equations (23) and (34) and (35) of the tensor LEED codes5.
If we further restrict the result to the lowest-order terms of this
expansion, we obtain a simplified linear tensor LEED result.

Equation (30) is efficient for determining the change
of LEED intensity, and hence change of R-factor, due
to a small structural change, because the computationally
expensive quantities Gi j

o;L ′,L ′′( �R j − �Ri ) and Tj;L ′′( �R j ) are
obtained as part of the NanoLEED calculation for the reference
structure and do not depend on the structural changes being
explored. It is therefore a good basis for automated structural
optimization.

5. Conclusions

We have described two very useful extensions of our
NanoLEED methodology. The first allows overcoming poor
convergence of multiple scattering in small atomic subclusters.
And the second permits the efficient application of directed
search methods based on using a downward sloping target
function, the R-factor. These extensions bring the structural
determination of nanostructures one step closer: the main
challenge ahead is experimental rather than theoretical or
computational, as discussed at some length in our earlier
papers [1–3].
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